Search results for " Secondary 30C65"

showing 3 items of 3 documents

Uniformization of metric surfaces using isothermal coordinates

2021

We establish a uniformization result for metric surfaces - metric spaces that are topological surfaces with locally finite Hausdorff 2-measure. Using the geometric definition of quasiconformality, we show that a metric surface that can be covered by quasiconformal images of Euclidean domains is quasiconformally equivalent to a Riemannian surface. To prove this, we construct suitable isothermal coordinates.

Mathematics - Complex VariablesMathematics::Complex VariablesPrimary 30L10 Secondary 30C65 28A75 51F99 52A38Metric Geometry (math.MG)ArticlesreciprocalityuniformizationisothermalMathematics - Metric GeometryQuasiconformalFOS: Mathematicssurfaceapproximate metric differentialComplex Variables (math.CV)
researchProduct

Uniformization of two-dimensional metric surfaces

2014

We establish uniformization results for metric spaces that are homeomorphic to the Euclidean plane or sphere and have locally finite Hausdorff 2-measure. Applying the geometric definition of quasiconformality, we give a necessary and sufficient condition for such spaces to be QC equivalent to the Euclidean plane, disk, or sphere. Moreover, we show that if such a QC parametrization exists, then the dilatation can be bounded by 2. As an application, we show that the Euclidean upper bound for measures of balls is a sufficient condition for the existence of a 2-QC parametrization. This result gives a new approach to the Bonk-Kleiner theorem on parametrizations of Ahlfors 2-regular spheres by qu…

metric surfacesPure mathematicsMathematics - Complex VariablesGeneral Mathematics010102 general mathematicsPrimary 30L10 Secondary 30C65 28A75 51F99 52A38Hausdorff spaceMetric Geometry (math.MG)01 natural sciencesUpper and lower boundsMetric spaceMathematics - Metric GeometryBounded function0103 physical sciencesMetric (mathematics)Euclidean geometryFOS: MathematicsMathematics::Metric Geometry010307 mathematical physicsComplex Variables (math.CV)0101 mathematicsUniformization (set theory)ParametrizationMathematicsInventiones mathematicae
researchProduct

Quasiconformal Jordan Domains

2020

We extend the classical Carath\'eodory extension theorem to quasiconformal Jordan domains $( Y, d_{Y} )$. We say that a metric space $( Y, d_{Y} )$ is a quasiconformal Jordan domain if the completion $\overline{Y}$ of $( Y, d_{Y} )$ has finite Hausdorff $2$-measure, the boundary $\partial Y = \overline{Y} \setminus Y$ is homeomorphic to $\mathbb{S}^{1}$, and there exists a homeomorphism $\phi \colon \mathbb{D} \rightarrow ( Y, d_{Y} )$ that is quasiconformal in the geometric sense. We show that $\phi$ has a continuous, monotone, and surjective extension $\Phi \colon \overline{ \mathbb{D} } \rightarrow \overline{ Y }$. This result is best possible in this generality. In addition, we find a n…

primary 30l10QA299.6-433Mathematics::Dynamical SystemsMathematics - Complex VariablesMathematics::Complex VariablesHigh Energy Physics::PhenomenologycarathéodoryPrimary 30L10 Secondary 30C65 28A75 51F99 52A38Mathematics::General Topologymetric surfacebeurling–ahlforsMetric Geometry (math.MG)quasiconformalsecondary 30c65 28a75 51f99Carathéodorymetriset avaruudetfunktioteoriaPhysics::Fluid DynamicsMathematics - Metric GeometryBeurling–AhlforsFOS: MathematicsmittateoriaComplex Variables (math.CV)AnalysisAnalysis and Geometry in Metric Spaces
researchProduct